
This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

Parallel Discrete
Event Simulation

Course #14
David Jefferson

Lawrence Livermore National Laboratory
2014

LLNL-­‐PRES-­‐654176

1 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Next Two Weeks!
• Two “finale” lectures!

• I will make an audacious but speculative argument!
• Optimistic parallel discrete event simulation can be viewed as a new parallel

programming paradigm for many scalable applications, not just simulation.!
• Put another way: From this point of view all sufficiently large cooperative

parallel computations can fruitfully be viewed as simulations!

• Will touch on many exascale (and beyond) issues!
• synchronization!
• debugging!
• fault recovery!
• load balancing!
• power management!
• space-time symmetry!
• parallel programming methodology!

• Looking for your feedback and ideas!

2

2 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual Time for Most
Large Scale Computations

3

3 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Parallelism, communication, and
synchronization today are too complex!

• Multiple units of parallel computation!
• processes, MPI tasks, chares, logical processes, application threads,

kernel threads, hardware threads, SIMD elements!

• Multiple communication mechanisms!
• MPI messages, MPI collectives, native packets, pipes, sockets, RPC,

shared memory, shared files!

• Multiple synchronization primitives!
• interrupts and interrupt masking, atomic R-M-W instructions, SIMD

synchronization, locks, semaphores, messages, critical sections,
timeouts, transactions, barriers, and … rollback, and virtual time!

• Most of these constructs are fundamentally
nondeterministic!

4

4 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Simplify some of the complexity by
using Virtual Time
• Virtual time is a temporal coordinate system that plays a

logical role in the computation!
• It is an abstraction of real time, much as an address space is an

abstraction of real space!
• It has many of the same properties of Newtonian time!
• It allows time to be addressable and random access, just as we make

space addressable.!

• Heretofore the only broad computational paradigm that
makes explicit use of a temporal coordinate system is
simulation.!

• But what if we view any computation as taking place in
the context of both a temporal and spacial address space
— virtual space-time?!

Virtual time — not just for simulation any more!
5

5 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Two distinct recommendations

• Consider framing any large computation as a virtual time
computation.!

• Consider optimistic (rollback-oriented) implementation
of virtual time.!

• How would it affect generic issues in all large scale
computation … ?!
• debugging!
• synchronization!
• fault recovery!
• load balancing!
• energy management!
• programming methodology

6

6 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Determinism

7

7 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Determinism

!
• Repeated execution of the same binary on the same

platform with identical inputs yields identical outputs!
• Bit for bit!

• It includes scale independence and configuration
independence

8

8 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

All virtual time programs are
deterministic!

• Replace threads, processes, chares, etc. with objects of the kind we
have described in this course.!

• Replace all synchronization and mechanisms with structures defined
in terms of virtual time!

• Replace all communication mechanisms with structures defined from
event messages!

• Require a deterministic virtual time tie-breaking rule !

• Exclude access to real time, real randomness, real node addresses,
and real memory addresses inside of event methods!

• Then —

9

It is impossible to write a
nondeterministic virtual time program!

• This is true for both conservative and optimistic implementations.

9 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Significance of Determinism to
High Performance Computing

10

10 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Debugging methodology can be
greatly simplified

• Any nondeterminism observed is immediately known to be a fault or else a bug in
the underlying runtime system, OS, or hardware. !

• Classic “sequential” reasoning and instrumentation used to narrow down the
location of a bug works for parallel applications, because the semantics of virtual
time are sequential.!

• No timing-dependent Heisenbugs are possible at the application level — passive
instrumentation that affects real time behavior does not affect virtual time behavior!

• Breakpoints can be introduced in the runtime system (without resorting to
instruction replacement) to pause the global computation at a particular virtual
time for closer inspection with power tools.!

• Time stepping through various intervals of virtual time is possible and
reproducible.!

• With optimistic (rollback-oriented) implementation, fast backward time-stepping
through virtual time can be implemented based on suppression of fossil collection
(until you run out of RAM).!

• We already discussed low-overhead, non-barrier optimistic checkpointing as well
earlier in the course

11

11 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Arbitrary fault detection and recovery
!

• Because of application-level determinism, any discrepancy indicates a failure
in system layers below!
• transient or permanent HW failure of some kind (including in the comparison)!
• a bug in runtime system or OS!

• Arbitrary single faults affecting the application are detectable by
duplicate computations!
• Not just memory or communication faults — transient processor faults also!
• Arbitrary single faults are correctable by triplicate computation and voting !

• These techniques only work for arbitrary single faults if the
application is deterministic!
• With a nondeterministic computations, the fact that states and messages do not disagree

means nothing.!
• There may not even be corresponding states and messages!

• In addition, with optimistic virtual time, transient faults are also
correctable by quasi-local local rollback!
• No need to restore global checkpoint!

12

Transient processor faults are not even detectable in today’s architectures — there is no hardware for it today and in general there can’t be without duplication
somewhere.!!
Even if detectable, such faults are not correctable without even more mechanism.

12 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Synchronization

13

13 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Synchronization is about the relative
timing of events in a computation
• It is about constraints of the timing relationships among

events!
• It is about the total order of events only,!
• … not their real time speed or performance!
• Recall that with any implementation of virtual time the runtime system is

concerned only with the ordering properties of virtual time values, not the
arithmetic properties!

• We can thus re-interpret the definitions of various
synchronization constraints as referring to virtual time
instead of real time!

• Examples!
• mutual exclusion!
• database transactions!
• barriers

14

Because virtual time has exactly the properties of real time that synchronization depends upon, we can consider every synchronization primitive and re-interpret its
definition and/or implementation with virtual times substituted for real time. A lot of very interesting things happen.

14 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Mutual Exclusion
• Two actions, P and Q, are mutually exclusive if they do not overlap

in time, i.e. either P completes before Q starts, or vice-versa.!
• Or if they are executed in a semantically equivalent way!

• Usually implemented as a race: The first one to start prevents the
second one from starting until the first one completes!

• It is nondeterministic which one wins.!

• Generally implemented with busy-waiting, locks, semaphores, etc.,
and proper prelude and postlude code in P and Q.!
• Deadlock is a hazard if not done correctly!

• These implementations apply only to sequential segments of code
that somehow share access to a lock or semaphore!

• They are not naturally generalizable to the case where P and Q are
themselves big parallel computations.!

• These implementations preclude any parallelism between P and Q
15

15 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Mutual Exclusion in Virtual Time
• Instead, interpret the definition of mutual exclusion to mean non-overlapping in

virtual time rather than in real time!

• Simply allocate an interval of virtual time to P and a non-overlapping one to Q. !

• No locks or semaphores required. No prelude or postlude code required.!
• Deadlock is impossible!!

• Works even if P and Q are arbitrarily large and complex parallel computations, not
just sequential fragments!

• P and Q can execute in parallel as long as they do not conflict. If they do, one the
one in the later virtual time interval will (partially) roll back.!

• The two may execute in either order or in parallel, but …!
• If there is a conflict, the one allocated the earlier virtual time interval always “wins”!
• This is deterministic mutual exclusion!
• Regardless of actual execution order their committed results will be as if executed in virtual time

order!

• You cannot write nondeterministic mutual exclusion in virtual time !
• … unless you assign virtual times by nondeterministic mechanisms, which we have excluded!

• On the other hand, you cannot write deterministic mutual exclusion with locks or
semaphores!
• … which are inherently nondeterministic

16

16 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Database transactions
• An atomic transaction P is an action that is, in effect,

mutually exclusive with all other actions in the
computation!
• i.e. during its execution no other code can modify or observe its

intermediate states!

• Database transactions generally have to be atomic!
• Order of transaction execution generally nondeterministic!
• Optimistic, multiversion concurrency control mechanisms go part way

toward optimistic virtual time synchronization but …!
• use transaction abort rather than full rollback!
• are still nondeterministic in the serialization order of transaction execution!

• None of the concurrency control mechanisms are readily generalizable to
arbitrary internally parallel or distributed atomic actions!

• Generalization to arbitrary nested transactions is complex

17

17 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual Time Atomic Actions
• In Virtual Time all single events are already primitive

atomic actions !

• An arbitrary complex parallel or distributed action can
be made atomic by allocating it a window of virtual time
that does not overlap that used by any other part of the
computation!
• All transactions must be allocated short segments of virtual time unique

to themselves — that’s all there is to it!
• Nested transactions are easily accommodated by allocating nested

regions of virtual time to them.!

• Even distributed transactions that access the same data
objects can proceed in parallel!
• If there is a conflict, the one with the lower region of virtual time will

always win!
• Transactions commit in virtual time order !
• Apparent order of transaction execution fully deterministic

18

18 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Barrier Synchronization

• If P and Q are parallel programs, then let us write !
! ! { P ; Q }!
where ; is a barrier synchronization operator.!

• Semantically, barrier synchronization is the composition of
(partial) functions. If FP and FQ are (partial) functions over system
states corresponding to programs P and Q, then !
! ! ! ! ! F{P ; Q} = FQ ◦ FP!

• Operationally, barrier synchronization means!
• Execute P, starting from an initial input state!
• Execute Q, where the output state of P is the input state of Q!
• The output state of the whole computation is the output state of Q!
• Information is only transmitted from P to Q, but never the reverse

direction

19

19 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative Implementation of
Barrier Synchronization

• There must be a way of indicating which processes are
involved in a particular barrier instance. In MPI that is a
communicator.!

• In each process we need a specific call to a barrier
function, e.g. MPI_barrier(communicator), at the exact
point in the logic where the barrier occurs!

• The conservative implementation of { P ; Q } relies on
process blocking!
Start all parallel parts of P; if any part of P fails, abort!
Each process, when it executes the barrier() operator, blocks!
 until all parallel components of P to finish in real !
 time(including any threads or processes created by P)!
Start all parts of Q

20

20 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Barrier Synchronization

• Blocking until all parts of P to finish in real time is not
formally required!

• All that is required is that it appear that way, though it is
not obvious how else to do it!

• Parts of Q can be started before parts of P finish, or even P
and Q can be done out of order, as long as the formal
definition of barrier synchronization is satisfied.!

• Compilers routinely reorder statements across ; -
boundaries all the time, as long as it makes no semantic
difference.

21

21 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Optimistic Virtual Time Synchronization
• Fundamental observation:!

With virtual time there is always a perfect global
barrier between any two distinct virtual times!!

• To create implement a barrier as in { P ; Q }, just
make sure that all events in P take place at lower virtual
times than any of those in Q!!

• Because the barrier is global, no construct like a
communicator is required.!

• Because we are using virtual time no specific call to any
kind of barrier() programming primitive is required. !
• We have our temporal coordinate system to use instead of points in the

sequential code.!
• We can name points in virtual time, and we can calculate them!

22

22 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Performance comparison between
conservative and optimistic virtual time
barrier synchronization

23

23 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Good performance case for
conservative barrier implementation

• Time between barriers across all processes relatively uniform!

• High average parallelism between barriers!

• Relatively short time real time interval between first arrival at
barrier and last

24

Time goes upward in this diagram. The blue line is the completion of the previous barrier synch. The green lines represent the beginning and end of the next
barrier synch. The red bars indicate how much computation each processor does before it reaches the barrier call, after which it stays blocked until the last one
reaches the barrier.

24 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Bad performance case of
conservative barrier synchronization

25

• Time between barriers across all processes highly non-
uniform!

• Low average parallelism between barriers!

• Relatively long time real time interval between first arrival at
barrier and last

Time goes upward in this diagram. The blue line is the completion of the previous barrier synch. The green lines represent the beginning and end of the next
barrier synch. The red bars indicate how much computation each processor does before it reaches the barrier call, after which it stays blocked until the last one
reaches the barrier.

25 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

A load balancing problem

26

Time goes upward in this diagram. In this case the blue lines are the start of a barrier synchs, and the green lines represent the ends of barrier synchs. The red bars
indicate how much computation each processor does before it reaches the barrier call, after which it stays blocked until the last one reaches the barrier.!!
In this case with the repeated barriers it turns out that the same processor is the bottleneck each time, taking the longest time to reach the barrier call. Neither
conservative nor optimistic synchronization alone can solve this performance problem. It is essentially a load balancing problem, and the computation should be
rearranged so this does not happen.

26 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

How Repeated Conservative
Barriers Work

• Colored bars represent
work between barriers!

• Horizontal lines represent
ends of each barrier
interval

27

Here we have a diagram illustrating repeated barriers, but one that is more or less statistically load balanced, meaning that the bottleneck process moves around
and is not always the same. !!
The synchronization is conservative, meaning that processes block at the barrier until all of the other processes reach the barrier. The time between barriers is
determined by the time the last one reaches the barrier. Hence the vertical colored bars represent time when the processors are doing useful work, and the space
above the vertical bars that is blank represents time that the processors are idle. In this example, more than half all processor time is idle, waiting for whatever
bottleneck process is the last to finish during each barrier cycle.

27 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

How Repeated Optimistic Barriers
Work

• Colored bars represent
work between barriers!

• Horizontal lines represent
ends of each barrier
interval!

• Light tan: event
execution that will be
rolled back!

• Dark brown: rollback
overhead (assumed 50%
or event time)

28

This diagram is a little hard to explain. It is explains how optimistic synchronization would work on the same repeated barrier synchronization as shown in the
previous slide. The red, orange, green, blue and purple vertical bars are the exact same ones, and the same length, and in the same order, as on the previous slide,
representing computation that has to be done between the barriers. But because this is optimistic synchronization, we need to represent committed executions of
the code (color) and rolled back executions of the code (light tan) as well as rollback overhead (dark brown). The time it takes to do a rollback is assumed to be 50%
of the time it took to execute the event in the forward direction, so the dark brown bars are always half as long as the light tan bars just below them in this diagram.!!
Also to understand this diagram you must understand that each process is supposed to be communicating with its left and right neighbors using event messages.
Any colored bar that is strictly higher than the same colored bar to both its left and right is the slowest of the three. It presumably has its communication already
from its left and right neighbors by the time it finishes one round of computation, and can start the next round without delay. Thus, in the bottom row, the third
process counting from the left finishes later than its two neighbors, and so it can start on the next round of computation immediately and will not need to rollback
because of any late messages from its neighbors. Hence, the third process starts the yellow computation, part of the second round, immediately after finishing the
red computation of the first round.!!
By contrast, its two neighbors are faster than at least one of their neighbors (in particular, the third process). So although the optimistically start their next round of
computation, it is going to be rolled back when process #3 finishes and sends them a (straggler) message. However, the straggler message does not interrupt the
execution of the event that was going on — we do not presume preemption, so the event continues until it completes before the rollback starts, Hence, each light
tan bar, representing a rolled back event, is the same length as the colored bar above it, which represents the execution of the same event which gets committed
rather then rolled back. In between the light tan bar and the colored bar above it is a dark brown bar that is 50% as long, which represents the overhead of rollback.!!

28 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Comparison between conservative and
optimistic barrier synchronization

• Blank space:
blocked
process!

• Light tan:
event
execution that
will be rolled
back!

• Dark brown:
rollback
overhead
(assumed 50%
or event time)

29

This slide shows the diagrams in the previous two slides side-by side. You can see that the conservative barrier execution has a lot of time when the processors are
idle, waiting at the barrier for the last process to reach it before starting the next round of computation. But the optimistic barrier synchronization has no idleness.
It is always executing (at least until the last round is finished). The execution is in most cases speculative and ends up getting rolled back. But even so, the five
rounds of the computation finish slightly sooner that with the conservative synchronization. !!
A key parameter for the repeated barrier computation is the ratio of the worst case execution time of any process in a round to the average case execution time
among the processes in a round. If that ratio is high, then conservative execution performs very poorly and optimistic execution often wins. If that ratio is low,
however, then the overhead of optimistic synchronization often causes it to perform worse than conservative synchronization.

29 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Fault Recovery

30

30 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Detecting and correcting transient
computational faults

• Today we have various mechanisms for detecting and
correcting memory errors and data transmission errors!
• Generally variations on parity, checksums, and ECCs.!

• But we have no general redundancy mechanisms in place
for even detecting outright computational errors!
• The only possibility is duplication of the computation and comparison!
• But that only works if the computation is deterministic!

• And even if we detect them, we currently have no way of
correcting them except by global restoration of a global
checkpoint

31

31 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reverse computation cannot reliably
restore a previous state in the
presence of a fault

• What is supposed to happen!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in forward computation!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in reverse computation!

<S1> → E+() → <S2> → E-() → <S1>!

• The story is no better if the fault occurs in the runtime
system or OS

32

Notice that if we want to use rollback to recover from faults, we cannot use reverse computation to accomplish it. With reverse computation, if we start in state S1

and execute E+() correctly then we get to S2, and if we then execute E-() correctly we get back to S1.!!
But if a fault happens during execution of E+(), and we do not get to S2, but instead to faulty state, then executing E-() correctly does not necessarily get us
back to S1 as it is supposed to, but likely to another faulty state.!!
A similar problem arises if the fault occurs not during E+(), but during E-(). Again, starting from correct state S2, we do not get back to correct state S1 as we
are supposed to, but to a faulty state.

32 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Can we use rollback to recover from
faults?
• We would probably not consider it except that we are have a

rollback mechanism in place for synchronization anyway!!

• But with virtual time transient computational faults are
correctable without global restoration of a global checkpoint!

• However!
• We must duplicate the entire computation just to detect computational errors!
• We must use state saving, not reverse computation, for rollback!
• We must check for errors at commit time by comparing states and messages in the

duplicate computations!

• Corrections can be done !
• semi-locally!
• asynchronously!
• in parallel with the rest of the computation!
• no (conservative) barrier required

33

33 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Run entire computations in duplicate
• Obviously requires twice the RAM right off the top, and

twice the cores if there is to be no speed sacrifice.

34

Old
EGVT

New
EGVT

Because this is a deterministic virtual time computation, both of the space-time graphs will look identical. !!
The lower green line is the virtual time at which the last full state saves occurred, so we can roll back to those states without doing reverse computation. The states
and messages crossing that line were validated by comparing them to their twins in the other computation.!!
The upper green line represents the newly calculated EGVT. At this point we are about to commit to this new EGVT and discard all older state and message
information. But first, as part of commitment, we have to make sure it is correct, i.e. that the new states and messages we are going to save and from which we
cannot roll back, have not been damaged by a fault of system bug.!!
(Slight additional complications in the algorithms on these next slides arise if objects are created or destroyed, but we will ignore them.)

34 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Compare final states and messages to the
corresponding ones in the twin computation

35

Old
EGVT

New
EGVT

The blue segments represent the states (vertical) and messages (horizontal) that will be saved after commitment. All else will be discarded. !!
The first step is to compare these states and messages from one computation to those of the other twin computation. If they are all identical, then the commitment
can continue, and all but the blue states and messages can be discarded.

35 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Identify states and messages that disagree
between the “twin” computations

36

Old
EGVT

New
EGVT

However we may find discrepancies in some of the states or messages that we compare. In this case the red lines represent states that disagree with the
corresponding ones in the other duplicated computation. !!
We don’t know at this point which ones are correct and which are wrong — indeed in principle they could all be wrong, though that should be extraordinarily
unlikely. We also don’t know if these discrepancies represent the results of multiple faults, or just the spreading pollution of one original fault. If they are multiple
independent original faults, some of the faults could have occurred in one computation and others could be in the twin. !!
Regardless, the following procedure is unchanged.

36 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

If possible, trace backward in the
computation to find the original faulty event

37

Old
EGVT

New
EGVT

The original faulty event(s) have inputs that agree in the twin computations, but outputs that do not. If the rollback mechanism uses full state saves for every event
or full saved state deltas of some kind (e.g. dirty pages), then we can trace backward in both computations, comparing comparable states and messages between the
two, to discover the original faulty event. The original faulty event would be an event in which all of the inputs to the event (states and messages) agree between the
two computations, but the outputs differ. Having found that event, we know that it either executed wrong in one computation or in the other (or extremely rarely,
both), but we don’t know which. The red arcs are where the corresponding states or messages in the twin computations disagree. The starred event is the one that
had the original failure in one or the other computation (but we don’t know which one).!!
If there is a way to reconstruct this state reliably in both computations (e.g. because we are doing full up front state saving (snapshotting) between every two events)
then we could just restore those states to the object in question in both computations and let them execute forward again from there using lazy cancellation. Both
computations will re-compute the red tree of incorrect or potentially incorrect messages and states, and if the final states and messages they compute at EGVT agree
this time, then the problem has been perfectly corrected. If not, then there is either a bug in the runtime system/OS, or there is a permanent fault (or a second
transient fault — presumably so rare that it is negligible), and we should then abort.

37 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Trace backward all the way to the last validated
saved states, roll back, and recompute forward

38

Old
EGVT

New
EGVT

Trace back from the states and messages that disagree between the two computations at the time of the New EGVT back to the last validated snapshot to identify all
states and messages that have causal paths to the known good states and messages at Old EGVT. In this diagram all of the orange and red events, states, and
messages are suspect, and the fault is somewhere included among them. That is the portion of the computation that has to be re-done. Even if the fault was in the
OS or runtime system, as long as it was transient, redoing the red computation will correct it. (But it will not necessarily correct the effects of bugs in the OS or
runtime system.)!!
To correct the faults we roll back all of the objects in both computations that lead to suspect events. In this case it is the leftmost 8 objects in both computations that
must roll back. When we roll back the 8 leftmost objects, we proceed to re-execute forward using lazy cancellation. That prevents us from resending messages that
are the same as were generated the last time the event was executed before the rollback, and from re-doing more of the computation than is necessary to assure that
the fault is corrected.!!
However, since we are not doing full state saves after every event, we have to trace backward from the bad outputs of the computation all the way back to the
known good inputs. Any message, state, or event on a path from the known good inputs to one of the bad outputs is suspicious. In this diagram that includes both
the red and orange arcs and nodes.!

38 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Don’t use aggressive cancellation in the
rollback

39

Old
EGVT

New
EGVT

We must roll back all processes that are suspicious to a known good state, and start re-executing forward. As we re-execute forward we can use aggressive
cancellation, lazy cancellation, or some other variation. Aggressive cancellation, however, is a poor choice because it leads to cancellation of many more messages
than necessary, and hence much more re-computation than necessary. In this diagram the brown arcs and computation are not suspicious, but aggressive
cancellation would cancel all of those messages anyway, and then the forward execution would regenerate and re-send them all. It would work, but is inefficient.!

39 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Use Lazy cancellation instead!

40

Old
EGVT

New
EGVT

When we roll back the leftmost 8 objects (the suspicious ones) to the known good states and message queues and then re-execute forward with lazy cancellation, we
end up canceling and re-executing a lot less computation than with aggressive cancellation. In this diagram the red and green arcs are those that have to be re-
generated and re-transmitted. The red arcs were actually incorrect in at least one of the twin computations and of course they end up being recalculated. The
vertical green arcs represent events and states that get re-executed just because we don't know that they are correct until we re-execute them all the way forward to
final states at time New EGVT. But with lazy cancellation the events on the green paths recalculate the messages sent from those events, and because the outgoing
messages from those events were correct the first time and are then regenerated the same as the first time the event was executed, there is no need to cancel them or
resend them those messages -- that is the way lazy cancellation works. Thus, there are no green message arcs in this diagram, just green state arcs. With a little more
logic, some of the green states would not have to be re-calculated either, because once we recalculate and event all of whose outgoing messages are already correct,
if that happens in an object whose final state is known correct, then all of the intermediate states can be presumed to be so also.

40 PDES Course Slides Lecture 14.key - May 12, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End

41

41 PDES Course Slides Lecture 14.key - May 12, 2014

